Advanced Math

6-4

Vectors and Dot Products

<u>Vector Operations</u> - Given $\boldsymbol{u} = \langle a, b \rangle$ and $\boldsymbol{v} = \langle c, d \rangle$

<u>Vector addition</u>: $\boldsymbol{u} + \boldsymbol{v} =$

answer is scalar / vector

<u>Scalar Multiplication</u> : $k \cdot v =$

answer is scalar / vector

<u>Dot Product</u> : $u \cdot v =$

answer is scalar / vector

Do vectors exhibit the field following properties?

Given $\boldsymbol{u} = \langle a, b \rangle$ and $\boldsymbol{v} = \langle c, d \rangle$ and $\boldsymbol{w} = \langle x, y \rangle$

property; is u + v = v + u?

property; is $u \cdot v = v \cdot u$?

_ property; is $u \cdot (v + w) = u \cdot v + u \cdot w$?

Vectors also have the following properties.

1) Dot by zero:

answer is scalar / vector

2) Vector Dot Squaring:

answer is scalar / vector

3) Scalar and Dot multiplication:

answer is scalar / vector

Angle between two vectors:

Find the angle θ between vectors.

*)
$$u = 2i - 5j$$

 $v = -i + 7j$

Orthogonal Vectors -

Assignment: pg. 553 2-34 even.